

How Do We Build Economically Successful CO2 Capture & Storage Projects?

**Cal Cooper** 

Science Fellow

## **About ConocoPhillips**

- Major international oil & gas company
- Nation's second largest refiner
- Largest US gas producer
- Has a gasification technology
- Substantial experience with gas separation and injection
- Core competency subsurface analysis and risk management; CO2-EOR experience
- Technology leader in heavy oil



## ConocoPhillips

- Believes that we must address Climate
   Change as a nation and chart a path forward in a global framework.
- "If we wait too long, it won't be an issue of mitigation. It becomes one of adaptation ...with society paying a high price."
  - Jim Mulva, ConocoPhillips Chairman and CEO



## ConocoPhillips is

 Actively evaluating technical options and costs for Carbon Capture and Storage projects.

 Undertaking initiatives to increase efficiency and reduce emissions.



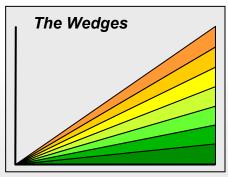
## **Sharing our perspective on CCS**

- CCS is only one mitigation arena, but it will be a major industrial space. We are ready to start.
- Success will require "testing the envelope," "validating new technologies," and "managing R & D risk".
- Valuing carbon in a transparent fashion for the consumers is necessary for CCS investments.
- Small-scale projects will not demonstrate industrial materiality.
- Acceleration of R & D and fast-track testing of new or improved processes is essential for timely success.



#### Power and CCS...

- Early CCS projects will require large amounts of additional power (20-40%), a major deterrent.
- Costs and efficiency of CCS must improve dramatically or it will fail in the marketplace.
- Power companies tend to be uncomfortable with the operational complexity of plants w/ CCS.
- We need partnerships for progress.




#### Will CO2 EOR Enable CCS?

- Frankly, not in most locations.
- It's NOT about "putting gas down old wells."
- Old fields require major infrastructure; cost of system recapitalization is huge.
- Current Permian projects support ~\$10 -25/tonne delivered at injection pressure, because they leverage big infrastructure.
- Offshore projects challenged even with "free CO2," storage credits and high oil prices.



#### The CCS Vision



- 1 Gt C = 3.7 Gt CO2 stored /year by CCS.
- Actions reduce emissions, net to the atmosphere.
  - US annual CO2 emissions ~6 Gt
  - US emissions from Coal ~2 Gt
- Gain benefits from big solutions and niche solutions.
- Drive a commodity business with good regulations and governance.
- It's not just about coal. Think steel, cement.
   Gasification of biomass with CCS will make real reductions of atm CO2.



## Reduce CO2 Capture Cost

- The cost prize...A horse race with no clear winner in sight...
  - Oxy-fire
  - Pre-combustion gasification
  - Post-combustion separation improvements urgently need cost reductions.
- Operational efficiencies are real revenue enabler.

Try them all.



### **Serious Questions**

- Financial incentives to try new technologies?
- How much research is needed? What is required before we start?
- What is the balance between tests and larger scale action?
- How can we effectively manage risk to accelerate action?



## Rational Objectives

- Get the most bang for our buck.
- "Clean-up" dirtiest first.
- Improve project economics before tackling marginal projects.
- Build integrated regional systems with every piece.
- Prove-in new technologies.
- Encourage innovation and risk taking.



## CCS Costs, Today's Tech

- Larger projects have better \$ /tonne metrics.
- Value is maximized with large co-gen plus synergies with industrial gas use (H2, CO, O2, N2).
- Best available technologies
  - \$40 \$70 /tonne with lots of synergies
  - Some projects >\$180/tonne CO2
  - Not able to "replicate" \$25 / tonne.
- Valuing carbon will provide economic framework.



#### Does it make sense...

- To start CCS with natural gas?
- To delay starting industrial projects by 10 years waiting for modest demos to prove themselves?



## Industry knows how to inject gas!



This photo is copyrighted by ConocoPhillips Alaska, Inc. and cannot be released or published without the express written consent of ConocoPhillips Alaska, Inc.

- Cumulative 30-yr natural gas recycling at Prudhoe Bay, Alaska
  - -~49 TCF
  - -~275 BCF/yr.
- Permian Basin EOR
  - ->40MM t/yr CO2.
- Big projects will sustain robust measurement, monitoring and verification.



<sup>\*</sup> All Prudhoe info calculated from Alaska Oil & Gas Conservation Commission Public filings.

## Storage: It's about geology...

- Leverage our knowledge base, don't reinvent the wheel.
- Ask the right questions. Use tools to test theories that need testing. Don't just use tools because they're available.
- Ask how...
  - Faults can be great migration barriers for gas
  - Wells don't act as straws
  - The earth has terrific containment systems
  - "Earthquake leaks" from deep reservoirs sounds more like a scary movie than science.



# Natural Containment Systems-Not one-off reservoirs

- Basins with multiple reservoirs, multiple seals and good hydrodynamic systems.
- Nature's best
  - seal = salt layers
  - gas filter = coal seams.
- Site selection is key.



## Location, Location, Location...

- Leverage industrial complexes.
- Leverage major basin storage systems
  - Gulf Coast, Permian Basin, San Juan Basin,
     Williston Basin, Illinois Basin...Southern North
     Sea Basin, Adriatic Basin.



## Ideal Early CCS Projects will

- Add to the power grid.
- Decrease CO2 emissions.
- Use petcoke and coal.
- Leverage industrial synergies.
- Be cornerstones for expansion.
- Make economic sense.
- Encourage R & D innovation.
- Have safe and sound storage sites.



#### Where to start?

#### Where it makes sense.

- ConocoPhillips announced study: Immingham
  - Major UK industrial area, deep water port, Humber Refinery Cogen upgrade.
  - Access ~14% UK CO2 Emissions w/i 50 mi
  - Enable CO2 pathway to So. N. Sea w > 1.6 Gt storage.
- Leverage Cogen at US refinery complexes.
- Consider
  - Value incentives, regulatory framework
  - Carbon-price bridge for early movers.



#### The time is now

- There's room for action and we need to move faster than most of us are comfortable doing.
- We don't need to solve everything first. We need to get moving.
- We can adapt our technology and business models.
- We need some federal framework of regulations before we get started.
- Many view "industry" as "the problem."
- ConocoPhillips intends to be part of the solution.
- Global Mitigation is cheaper than Global Adaptation.



#### **More Information**

1. ConocoPhillips website energy section:

www.conocophillips.com/energy



